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Abstract. A first-principles theoretical investigation of positron annihilation in alkali halide
crystals is carried out using a simplified cluster-embedding scheme. The system is represented
as a halide-centred cluster with basis functions only at the centre. The rest of the crystal is
modelled in two ways: (i) point ions located at lattice positions; and (ii) frozen-orbital ions
derived from an energy band calculation for the pure crystal. Calculations for both models
are carried out within the self-interaction-corrected local spin-density approximation and by
incorporating an electron–positron correlation functional. The effect of the model assumed on
the calculated positron lifetimes is analysed by demonstrating the sensitivity of the results to
the inclusion of the Madelung potential. A comparison of positron lifetimes of the ground state
of the positron to lifetime components identified in experimental work on lithium and sodium
halide systems is made.

1. Introduction

In the last few decades, density functional theory has rendered many-body calculations
feasible. During this time, positron annihilation experiments have unquestionably estab-
lished positron physics. The sensitivity of the positron to many-body structures has led to
a wide range of applications to a variety of materials. Positron annihilation, in particular,
has become an increasingly useful probe for the study of electronic states in a number of
condensed-matter systems [1].

Recently, Puska and Nieminen have extensively reviewed the interesting topic of
positron annihilation in solids and on solid surfaces [2]. The positron probe is outstanding
for a wide range of applications within the areas of determination of the Fermi surface,
and the search for vacancies in metals [3, 4]. In the fields of semiconductor physics
and devices, the defect centres introduced during crystal growth can be identified using
positrons, and slow-positron beams [5] can also be useful for determining the doping rate
and the correct annealing temperature. Furthermore, the different annihilation rates can
provide information about the identification of the impurity in the growing layer: carbon,
oxygen, or boron. Generally, positron beams favour the formation of localized bound states
at vacancies, substitutional and interstitial impurities, layered surfaces, and dislocations,
so positron annihilation lifetimes for imperfect crystals are different from those for pure
crystals [2, 6–9]. For these applications, it is of interest to explain how the crystal field
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influences the positron annihilation in pure-crystal structures such as those of alkali halides,
in order to provide a reference for defect-associated positron annihilation.

A typical example of defect-associated positron annihilation is that involving F centres
of coloured alkali halides [10]. The F centre consists of an electron which is localized on
a halide-ion vacancy by the electrostatic forces of the remainder of the crystal. A positron
in an F centre may undergo annihilation with one of the electrons of the neighbouring ions,
but not with one of the electrons of the defect centre itself, as the electron spin is polarized
parallel to that of the positron. This defect-related bulk annihilation of the positron is
called pick-off annihilation [11]. In lifetime spectra, there is also evidence of a bulk-like
trapped positron state in grown crystal layers, but the origin of this component and its exact
lifetime are ambiguous [12–15]. In order to analyse the origin of the positron annihilation,
a systematic investigation of the system of pure crystals is needed.

Positron lifetimes often hold key information about defect states of electronic structures.
Although experimental spectroscopy may contain information about the electronic structure
in solids, analysis of that information in terms of the specific structure of the electronic states
may be difficult, because positron annihilation also occurs in defect-free and periodic-lattice
states. Many of these problems of the data analysis could be resolved with theoretical
calculations of the predicted positron lifetimes for the bulk state and defect-associated
positron [16, 17]. In systems such as these, where the experimental characterization is
incomplete or uncertain, parameter-free tools are essential.

A first-principles method for self-consistent calculations for the positron states in many-
electronic systems has been developed [18]. There have been few attempts to calculate
lifetimes from first principles for self-consistent charge densities, which include the electron–
positron correlation [17]. In the atomic system, the positron correlation may provide a
dramatic shift of the positron lifetimes, and reduce the discrepancy with respect to the
experimental results for alkali halide crystals [19]. Furthermore, presumably the remaining
discrepancy may originate from a crystal effect, which may change the forms of the
overlapping densities of the electron and the positron.

In this paper, the aim is twofold: the systematic treatment of the crystal field by the
Ewald method; and calculations of positron lifetimes for the ground state of the positron
in the bulk state of the alkali halides LiF, LiCl, NaF, and NaCl, based on a first-principles
calculation, to provide an initial reference for the defect analysis. The system is represented
as a halide-centred cluster with basis functions only at the centre. The rest of the crystal
is modelled in two ways: (1) point ions located at lattice positions; and (2) frozen-orbital
ions derived from a linear-combination-of-atomic-orbitals (LCAO) energy band calculation
for the pure crystal—the so-called LCAO embedded-cluster method [20–22]. Calculations
for both models are carried out within the self-interaction-corrected local spin-density
approximation (SIC-LSDA) of the three-component formalism of the density functional
theory (DFT), incorporating a positron correlation functional. The dependence of the model
of the crystal field on the calculated positron lifetimes is analysed. A comparison of the
positron lifetimes for the ground state of the positron to lifetime components identified in
the experimental work on lithium and sodium halide systems is made [19].

A brief review of the three-component formalism of the DFT is considered in section
2, and then, in section 3, the periodic crystal structure is outlined. A description of
the computational procedure for the simplified embedded-cluster method for a centre-only
cluster is provided in section 4. The phenomenology of the positron annihilation is briefly
reviewed in section 5. The results for positron annihilation lifetimes are discussed and
compared with experimental results, and finally brief conclusions are offered. Throughout
this work, the Hartree atomic units(1 au= 27.2 eV and 1 au= 0.53 Å) have been used.
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2. The density functional formalism

The density functional formalism for the electron–positron system is reviewed and extended
to the periodic crystal structure. The total energy functional in three-component density
functional formalism within the SIC-LSDA is written as

Etotal = Ee + Ep + Vep + Eepe (1)

Ee = T0+ Vext + UC + Exc − USIC
e (2)

Ep = T0− Vext (3)

and

USIC
e =

Nσ∑
i

(UC [ρiσ ] + Exc[ρiσ ]). (4)

In the above expressions, the non-interacting component of the kinetic energy is denoted
as T0, the electron–nucleus interaction asVext , and the orbital densities of electrons as
ρiσ for the spin indexσ = ↑,↓. The electron exchange–correlation energy per electron
for a uniform-density electron gas is denoted asExc, the electron–positron correlation
energy in unit volume asEepc , and the electron–electron and the electron–positron Coulomb
interactions asUC andVep, respectively.

Normalization constraints on the atomic orbitals are imposed via Lagrange multipliers
εiσ in the usual way; the variational principle leads to the one-particle Kohn–Sham equations
for the atomic orbitals of electrons and the single positron:

H atom
iσ 9iσ (r) = εiσ (r)9iσ (r) i = 1, . . . , Nσ (5)

H atom
+ 9+(r) = ε+9+(r) (6)

where

H atom
iσ = −∇

2

2
− Z
r
+
∫

dr′
ρ(r′)
|r − r′| −

∫
dr′

ρ+(r′)
|r − r′| + V

xc
σ + V ep−ec +1V SICiσ (7)

H atom
+ = −∇

2

2
+ Z
r
−
∫

dr′
ρ(r′)
|r − r′| + V

ep−p
c (8)

whereV xc
σ is the exchange–correlation potential of the electrons, and1V SICiσ is the self-

interaction correction term for the exact limit of an electron:

1V SICiσ = −
(
VC [ρiσ ] + δExc[ρiσ ]

δρiσ

)
. (9)

In the above expression, the orbital Coulomb potential is defined asVC [ρiσ ], and we can
use the exchange energy for the uniform electron gas:

Exc[ρiσ ] =
∫
ρεxc[ρiσ ] dr (10)

εx [ρσ ] = −3

4

(
6

π

)1/3 ∫
dr [ρ4/3

↑ + ρ4/3
↓ ]/ρ. (11)

Furthermore, the correlation energy functionalεc of the electrons is available from the
work of Ceperley and Alder [23] as parametrized by Perdew and Zunger [24]. However,
the SIC term from the orbital-by-orbital subtraction is independent of the electron–positron
correlation term, because they are not identical. This means that the effective positron
potential for the single-positron system is SIC free and consistent with the generalized
Kohn–Sham equations introduced by Boronski and Nieminen [27]. The electron–positron
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correlation energy functional per unit volume was analysed using the Sawada bosonic
collective excitation by Arponen and Pajanne [25], and using the Fermi hypernetted-
chain (FHNC) integral method with a Jastrow variational wavefunction by Lantto [26],
as interpolated by Boronski and Nieminen [27]. At the limit of low electron densities, the
effective positron potential approaches the positronium binding energy of−6.8 eV. These
considerations are sufficient to deal with atomic electronic states, but the modification of
the functional for the periodic system is needed. In the next section, the convergence of the
crystal field, which is very sensitive to the positron lifetimes, is systematically achieved for
the point-ionic and band-ionic potential limits.

3. The periodic crystal system

In a perfect crystal, the alkali halide lattice is constructed from two interpenetrating
sublattices of the face-centred cubic (fcc) structure in which a halide ion is located at
Rν , and an alkali ion is placed atRν + t. Rν is a translational vector of the fcc lattice,
with the lattice constanta0. t is the vector from a halide site to a nearest-neighbour alkali
cation. The periodic crystal potential has been modelled as a modified point-ionic potential
and an energy band-ionic potential as follows:

Vcrys(r) =
∑
ν=0

[V Hion(r −Rν)+ V Aion(r −Rν − t)]. (12)

For the modified point-ionic lattice, the potentials become

V Hion(r) =
1− (ZH + 1) exp(−αHr2)

r
(13)

V Aion(r) =
1− (ZA − 1) exp(−αAr2)

r
(14)

whereZA andZH are atomic numbers of the alkali and the halide ions, respectively, and the
exponential terms are negligible beyond the ionic radiusRion (1.10 (Li+), 1.81 (Na+), 2.57
(F−), and 3.42 (Cl−)), and thus the relation exp(−αR2

ion) = 1 = 10−6 gives the parameter
α (11.42 (Li+), 4.22 (Na+), 2.09 (F−), and 1.18 (Cl−)). In a better approximation for the
crystal potential, the fit of the crystal potential based on a band-structure calculation takes
the form

V Hion(r) = −
ZH

r
e−α

H
0 r

2 +
12∑
i

CHi e−α
H
i r

2
(15)

V A
ion(r) = −

ZA

r
e−α

A
0 r

2 +
12∑
i

CAi e−α
A
i r

2
(16)

where the Gaussian fitting parametersCHi , α
H
0 , α

H
i , andCAi , α

A
0 , α

A
i are available from the

energy band calculations [21].
The periodicity for the ionic crystal potential provides the potential form of the Fourier

series:

Vcrys(r) =
∑
ν

Vcrys(kν)e
ikν ·r (17)

so the Fourier coefficients of these potentials can be derived from

Vcrys(kν) = 1

N�

∫
Vcrys(r)e

−ikν ·r d3r (18)
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where� is the volume of a unit cell,N is the number of cells in the crystal, andN� is
the volume of the entire crystal, and where

kν = m1b1+m2b2+m3b3 (19)

that is

kν = 2π

a0
[lx, ly, lz] (20)

and

t = a0

2
(1, 0, 0) (21)

where lx, ly , and lz are even or odd for the O5h group of fcc crystals andb1, b2, and b3

are basis vectors of the reciprocal lattice for the fcc structure—that is, a bcc lattice. After
changing the variables of the Fourier integrations and usingkν ·Rν = 2mπ andkν ·t = lxπ ,
we obtain the following relations:

1

N

∑
ν

e−ikν ·Rν = 1 (22)

e−ikν ·t = (−1)lx . (23)

The Fourier coefficients can be obtained as

Vcrys(kν) = 4π

�
[V Hion− (−1)lxV Aion] (24)

with

V Hion =
1

k2
ν

− Z
H + 1

kν
√
αH

D

( |kν |
2
√
αH

)
(25)

V Aion =
1

k2
ν

+ Z
A − 1

kν
√
αA
D

( |kν |
2
√
αA

)
(26)

where the Dawson function has been used:

D(x) =
∫ ∞

0
e−t

2
sin 2xt dt.

The convergence of the matrix element

V
crys
ij =

∫
φ∗i (r)Vcrys(r)φj (r) d3r (27)

for the crystal potential can be examined. As an example, for a normalized s-type basis
function,φi(r) = N exp(αir2), the matrix element of the crystal potential is written as

〈φi |Vcrys|φj 〉 =
∑
ν

Vcrys(kν) exp

[
− k2

ν

4(αi + αj )
]
. (28)

The convergence of the Fourier expansion is primarily determined by two factors: the
Fourier coefficientVcrys(kν) and the exponential term. The Fourier coefficient of the crystal
potential drops like 1/k2

ν , but the number of terms grows ask2
ν and will not converge unless

the exponent helps. Whenαi+αj is small (αi+αj < 20 withkν ∼= 31), the matrix element
will converge quickly, since the exponential term becomes smaller whenkν increases.

Whenαi +αj is large (αi +αj > 20), the convergence of the Madelung potential is not
rapid; since the exponential term is too large to neglect, the convergence depends on the
Fourier coefficientVcrys(kν). So the convergence of the coefficient can be improved using
Ewald’s method [28] in which the short-range summation can be cut off by introducing
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a short-range Gaussian screened potentialVcut, which gives zero potential at the nearest
neighbour. Now the crystal potentialVcrys(r) can be written as a sum of two parts:

Vcrys(r) = Vcut(r)+ VE(r) (29)

where the Ewald potential is defined by

VE(r) = Vcrys(r)− Vcut(r) (30)

and the cut-off potential is introduced as

Vcut(r) =
∑
ν=0

[V Hcut(r −Rν)+ V Acut(r −Rν − t)] (31)

with

V Hcut(r) =
−ZH exp(−γ r2)

r
(32)

V Acut(r) =
−ZA exp(−γ r2)

r
. (33)

The potentialVcut behaves like−Z/r around each nucleus. It is a short-ranged function,
dropping off to zero beforer approaches the nearest-neighbour distance. The Ewald
potentialVE is a relatively smooth function. It can be expanded in a Fourier series which
converges with far fewer terms.

Figure 1. The convergence of the Fourier coefficients of the Ewald potential(1 au= 27.2 eV)
in the modified point-ionic potential for LiCl withγ = 1.0. The crystal potentialVcrys(kν)
decreases as 1/k2

ν , while the Ewald potentialVE(kν) decreases more rapidly, resulting in the
rapid convergence of the lattice sum.
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From the requirement that the Ewald and cut-off potentials have the same periodicity,
the Fourier coefficients and the matrix element of the Ewald potential for the s-type basis
function can be obtained:

Vcut(kν) = 4π

kν�
√
γ
D

( |kν |
2
√
γ

)
[ZH − (−1)lxZA] (34)

VE(kν) = Vcrys(kν)− Vcut(kν) (35)

V Eij =
∑
ν

VE(kν)e
−k2

ν/4(αi+αj ). (36)

From the above equation, it is implied that whileVcrys(kν) andVcut(kν) decrease as 1/k2
ν ,

VE(kν) decreases more rapidly, as shown in figure 1. On substituting the Fourier coefficients
Vcrys(kν) andVcut(kν) from equations (24) and (34), respectively, into equation (35), the
lattice sum rapidly converges. The potentialV Hcut(r) with the parameterγ gives the−ZH/r
behaviour at the halide site, and goes to zero for the near-neighbour distance. From the
relationR = √2t , the following criterion is obtained:

γ > − 4

a2
0

ln

(
ZA

ZH

√
21

)
(37)

where the tolerance factor is set to1 = 10−6. Under this cut-off condition, energy
minimization can be achieved rapidly, and the calculation of positron lifetimes shows non-
sensitive and stable numerical results with the cut-off factor introduced. However, for
values smaller than the cut-off factor, the total energy was not converged, and the calculated
positron lifetimes were severely distorted and not consistent from one run to another.

The convergence problem of the matrix element for the energy band-ionic potential
model can be addressed straightforwardly using the same procedure as was applied to the
modified point-ionic potential model explained above. To simplify the calculation of the
matrix elements via the analytical form of the matrix elements, the linear combination
of Gaussian-type orbitals is useful; this can be optimized using the results of the atomic
calculations made with the numerical atomic structure code [29]. With this orbital basis set,
the self-consistent one-particle equations for the crystal system can be solved. The detailed
computational procedure will be amplified in the next section.

4. The single-site embedded-cluster method

The three-component formalism of the SIC-LSDA adapted to the periodic crystal system is
applied in order to investigate the positron annihilation process in alkali halides (LiF, NaF,
LiCl, and NaCl) within the simplified cluster-embedding scheme. The system is considered
as a halide-centred cluster with basis functions only at the centre. The rest of the crystal
is simplified: it is modelled as point ions located at the lattice positions, or frozen-orbital
ions derived from an LCAO energy band calculation for the pure crystal. The orbitals in
the wavefunction are assumed to be expanded in terms of a convenient set of Gaussian-type
orbitals (GTOs).

The total energy functional may be written as a sum of the atomic part including the
atomic potential of the halide at the centre, and the Madelung potential energy of the periodic
crystal lattice. From the functional derivative of the variational principle, the self-consistent
formalism of the DFT leads to the one-particle Kohn–Sham equations:

Hiσ9iσ (r) = εiσ9iσ (r) σ = 1, . . . , Nσ (38)

H+9+(r) = ε+9+(r) (39)
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where

Hiσ = H atom
iσ + VMa (40)

H+ = H atom
+ − VMa. (41)

Here, the Madelung potential is defined at the halide centre byVMa = Vcrys − Vcentre,
and the total Hamiltonian includes the ionic crystal field in the atomic Hamiltonian. The
matrix elements can be integrated by using GTO basis functions, and the matrix form of
the Hamiltonian can be diagonalized to solve the Kohn–Sham equations.

For convenience, a simplified version of the LCAO embedded-cluster method [22] can
be adopted for the analysis of the electron/positron structure of pure crystals. This code may
also be useful for the analysis of the defect system of F-centre-related positron bound states.
The essence of this method is that the eigensystem has the Hamiltonian of an infinite pure
crystal and the basis set of a finite number of shells of ions around the halide position. This
implies that while the expansion of the wavefunction in GTOs is limited to a finite number
of shells, the Hamiltonian corresponds to the infinite system. Our simplified system is a
halide-centred cluster with basis functions only at the first shell (central site), and is used
to model positron bound states of the negative ion of the bulk site. The rest of the crystal
potential in the Hamiltonian can be modelled and determined in the context of modified
point ions located at the lattice positions, or the frozen-orbital ions derived from an LCAO
energy band calculation for the pure crystal [20, 21].

In the context of the concept of the point defect centre in a crystal, the halide ion with
a bound positron can be considered as a kind of defect centre in the pure crystal as the
local limit of the positron state in perfect crystals. From this viewpoint, equations (38) and
(39) can be solved with the LC-GTO embedded-cluster method by the construction of a
point defect at the positron bound-halide-ion site. In other words, the Hamiltonian for the
positron bound system may be analysed on the basis of a model in which the system is
viewed as a pure-crystalline system with an embedded potential at the halide centre. The
pure-crystal HamiltonianHpc includes the crystal kinetic energy and the crystal potential
for the electron and the positron, respectively:

He
pc = −

1

2
∇2+ Vcrys (42)

Hp
pc = −

1

2
∇2− Vcrys (43)

and the extra potentialVemb is composed of the effective potentials of the electron and the
positron at the halide centre, written as

V eemb = −
Z

r
+
∫

dr′
ρ(r′)
|r − r′| −

∫
dr′

ρ+(r′)
|r − r′| + V

xc
σ + V ep−ec +1V SICiσ − Vcentre (44)

V
p

emb =
Z

r
−
∫

dr′
ρ(r′)
|r − r′| + V

ep−p
c + Vcentre. (45)

The density functional self-consistent iterative loop can be initiated from a zeroth-order
approximation of the Hamiltonian of the crystal containing defects〈Hdc〉, such as

〈He(0)
dc 〉 = 〈He(0)

pc 〉 + 〈V e(0)emb 〉 (46)

〈Hp(0)
dc 〉 = 〈Hp(0)

pc 〉 + 〈V p(0)emb 〉. (47)

In the computational procedure, the perfect-crystal Hamiltonian matrix elementH(0)
pc , and

〈V (0)
emb〉, are required to initiate iterations. The calculation for the infinite pure-crystal

potential can be carried out by using the BANDAID package [30]. The Fourier coefficients
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for the Coulomb and the Ewald potentials for the periodic infinite crystal have been installed
into the perfect-crystal Hamiltonian matrix element.

Table 1. Gaussian basis exponents of the fluorine ion. These sets are optimized for crystal
calculations for LiF and NaF from the numerical atomic structure results.

No of sets (i) Electron Positron

1 0.150 9536× 105 0.176 6448× 102

2 0.216 8112× 104 0.763 7861× 101

3 0.356 8040× 103 0.243 3052× 101

4 0.100 6477× 103 0.147 0892× 101

5 0.304 2323× 102 0.738 9733
6 0.972 3098× 101 0.185 0153
7 0.661 2085 0.813 0870× 10−1

8 0.605 6460 0.395 3731× 10−1

9 0.255 6460 0.729 7975× 10−2

10 0.100 8263 —
11 0.705 4373× 10−1 —
12 0.118 7524× 10−1 —
13 0.500 0000× 10−2 —

Table 2. Gaussian basis exponents for the chlorine ion for calculations of pure crystals of LiCl
and NaCl.

No of sets (i) Electron Positron

1 0.718 4573× 106 0.171 2508× 103

2 0.233 3152× 105 0.511 4676× 102

3 0.326 8139× 104 0.392 7008× 102

4 0.599 8057× 103 0.136 9680× 102

5 0.171 2508× 103 0.454 5725× 101

6 0.511 4676× 102 0.809 9507
7 0.106 8252× 102 0.481 4303
8 0.251 9048× 101 0.396 4695
9 0.595 2765 0.966 2527× 10−1

10 0.139 7643 0.374 8278× 10−1

11 0.966 2527× 10−1 0.236 9135× 10−1

12 0.236 9135× 10−1 0.722 0000× 10−2

13 0.722 0000× 10−2 0.115 8693× 10−2

Because of the conformal property of the GTOs, the basis functions fitted from numerical
calculations for atoms perpetuate the advantage of simplifying the management of the multi-
centred integration, which is encountered in matrix elements.

The single-GTO basis functions have been used with a finite number of exponents:

8i(r) = N0X exp(−αir2) (48)

whereN0 is a normalization constant, andαi are the Gaussian exponents illustrated in tables
1 and 2.r is the distance from the centre of the function, andX represents angular factors
used to specify the type (s, p, or d) of Gaussian function;X is 1 for zero-order Gaussians (s-
type), andx, y, or z for first-order Gaussian functions (p-type). The size and composition
of the basis set can be optimized by energy minimization as shown in figure 2 for the
self-consistent density functional calculation. From these calculations, the self-consistent
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Figure 2. The energy minimization from optimized electron basis sets for positron states in the
modified point-ionic potential of LiCl. Eleven basis functions of the positron are enough for
total energy minimization.

eigenvectors directly lead to self-consistent densities, which are useful for positron lifetime
calculations. General information about the positron annihilation is provided in the next
section.

5. Positron annihilation

When a positron is incident on a solid, it may be thermalized on the bulk site or at a
defect centre in crystals. The positron and the electron have the same mass, the same
magnitude of electric charge, and the same magnetic moment. The charge quanta of the
positrone+ and the electrone− are distinguished, withe+ = e− = |e|. In addition, the
positron and the electron are distinguishable from each other, and thus do not comply with
the exclusion principle. In thermal equilibrium with a medium of temperatureT (K), the de
Broglie wavelength of positrons, 2044.3/T 1/2, is always large compared to the interatomic
distancesd in condensed matter, whered ≈ 5 au, soλ+/d � 1. Therefore, thermalized
positrons in solids behave like waves as a requirement of the quantum behaviour of a
particle.

The positron annihilates with an electron and emits quanta. Since the electron and
the positron each have a spin of 1/2, there are two possibilities for the initial spin state.
If particle spins are antiparallel, the total spin of the system is a singlet,1S0; if they are
parallel, the system is a spin-triplet state,3S1.

Photons, on the other hand, each have a spin of 1, so the production of two photons
would necessarily result in either a spin of 0 or a spin of 2. In order to obtain a state
having a total spin of 1 and satisfying the linear momentum and energy conservation laws,
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two photons must be emitted in antiparallel spin states in opposite directions, each with
an energy of 0.511 MeV. However, three photons (3γ ) will generally be emitted in the
case of parallel spin states. The distribution of the angle among the three photons, and the
annihilation energy of 1.02 MeV, are more complicated than in the two-photonic decay.
The 3γ -decay is characterized by a typically small annihilation rate [31].

The observed radiation gives complete information about the state of matter, and the
dynamics of the positron under the energy–momentum and spin conservation may be
statistically analysed using the pair correlation function. The probability of pair annihilation
increases with increasing probability of an electron being at a positron position. A key
observable signal is the annihilation rate, which is proportional to the overlap of the electron
and the positron densities that are self-consistently determined by using the procedure
outlined in the previous section. For the two-photonic process, the annihilation rate can
be written as

λ = 1

τ
= πr2

0c

∫
dr ρ(r)ρ+(r)g(0; ρ, ρ+, ζ ) (49)

where r0 is the classical electron radius,ρ is the ground-state electron charge density,
and ρ+ is the positron charge density. If the electron and the positron are statistically
independent, the annihilation rate just comes from the product of their densities. However,
since they are not independent, especially in bound states, the rate is a sensitive measure of
the electron–positron probability distribution. The pair correlation functiong(0; ρ, ρ+, ζ )
gives a measure of the effect of quantum correlation between the electron and the positron
at the original positron position in any polarization modeζ . The positron annihilation rates
were calculated for the two-photon channel at the absolute zero of temperature in the context
of the unpolarized mode. The unpolarized pair correlation function has been taken from the
interpolation scheme for the electron–positron correlation [27].

6. Results and discussion

The density functional calculations were carried out for bulk positron lifetimes in alkali
halide crystals, such as LiF, NaF, LiCl, and NaCl. The potential is modelled in two ways:
(i) point ions located at the lattice positions; and (ii) frozen-orbital ions derived from an
LCAO energy band calculation for the pure crystal. The crystal system is modelled as a
one-site embedded cluster for the infinite crystal, discussed in section 4. The equilibrium
structures of the crystal lattices and lattice constants are used for the alkali halides. For this
one-site approximation, the Hamiltonian defined represents the infinite crystal lattice, and
the basis functions for the system are centred on the central anion site. The GTO basis set
consists of the s and p single GTOs. This Gaussian set has been used in calculations of
the pure-crystal Hamiltonian matrix element and the Madelung potential matrix element for
both the electron and the positron. And also this set has been used for the self-consistent
density functional calculation for the anion system; however, the electron and the positron
have been represented using different basis sets for each crystal.

The energy, which is dependent on the choice of the Gaussian basis set, is minimized,
and then the positron lifetimes are determined using the self-consistent densities of both
of the electrons and the positron. The Madelung potential lowers the electron eigenstates
via a relative contribution to the redistribution of electron states of the anion. For the
positron, however, it is inferred that the shape of the potential on the neighbour lattices
has a strong influence, because the positron is localized in the interstitial region due to the
strong Coulomb repulsion between the nucleus and the positron.
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6.1. The modified point-ionic potential

The point-ionic potential has been modified into a negative potential at each lattice point,
because the thermalized positron in the crystal is strongly repelled by the nucleus at lattice
points. The model potential becomes negative inside the ionic radius, and takes on the usual
form of the point-ionic potential outside the radius.

Table 3. Gaussian calculations of positron lifetimes (ns) in negative atoms, with atomic structure
information for the exchange-only potential (XO) calculation, the calculation including the
electron–electron exchange–correlation potential and the electron–positron correlation potential
(XC), and the calculation for the XC case with the pair correlation functiong (EPC). The
Hartree–Fock atomic calculation gives similar results to the XO case.

Atom nl(e+) XO XC EPC H–Fa

F− 1s 1.941 0.901 0.501 1.662
2p 9.688 3.251 1.274 9.435
2s 7.565 5.079 2.365 —

Cl− 1s 4.247 1.260 0.581 4.018
2p 12.63 2.819 1.066 12.46
2s 713.92 7.592 3.581 —

aFarazdel and Cade [32].

The Gaussian calculations of the positron lifetimes in negative atomic systems are
obtained, as illustrated on table 3, by adding the potential ingredients: the exchange-
only potential (XO) calculation, the calculation including the electron–positron correlation
potential and the electron–electron exchange–correlation potential without the electron–
positron pair correlation function, i.e.,g = 1 (XC), and the calculation for the XC case
including the pair correlation function (EPC). It is worth noting that in the negative atomic
system, positron lifetimes in the Gaussian calculation including the exchange-only potential
(XO) without either the correlation potential or the crystal field are identical to the results of
the XO numerical calculation made by the Hartree–Fock (H–F) method [32]. The Gaussian
basis set is optimized using the potential generated by the numerical atomic code. The
Gaussian basis set shows limitations as regards its ability to reproduce exactly the numerical
results for the atomic system. In order to deal with multi-centre integrations of the crystal
system, it is important to implement the Gaussian code with the optimized basis set for the
XO calculation by using the potential of the numerical atomic structure calculation. The
atomic results obtained with this Gaussian basis set provide a reference for assessing the
crystal effect. The overall trends of the Gaussian atomic results agree qualitatively with
those of the numerical atomic calculations.

The XO calculation including the Madelung potential shows a large shift of the positron
lifetimes from the Gaussian atomic results. The XC calculation for the modified point-
ionic potential model shows positron lifetimes shorter than those in the XO calculation;
this shortening is produced by the shifting of the density as shown in figure 3. The strong
inward attraction exerted on the positron density by the positron correlation potential in
the vicinity of the nucleus is also present in crystal calculations. In the point-ionic crystal
approximation, the positron density is spread out, and so slightly overlaps into the nearest
Na+ ions, by the distance of 4.4 au, in the NaF crystal. However, this density overlap with
the adjacent atoms can be reduced in the energy band-ionic crystal calculation.

Another way to view the XC comparison of the atomic system and the crystal system is
that the crystal effect becomes smaller than that in the XO calculation with the introduction
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Figure 3. The positron correlation effect in the modified point-ionic potential model of
NaF in terms of the atomic distancer (1 au= 0.53 Å). The positron correlation potential
(1 au= 27.2 eV) (V ep−pc ) in the vicinity of the nucleus attracts the positron density inward in
the positron bound state in the crystal. The long-range limit of the electron correlation potential
(V ep−ec ) is the positronium binding energy of−6.8 eV.

of the electron–positron correlation effect. This implies that the Madelung potential is
competing with the positron correlation potential. As shown in figure 4, with the inclusion
of the electron–positron correlation potential in the XC calculation, the crystal field as a
potential barrier to the positron strongly pushes the positron density inward, so the tail of
the positron density of the ground state becomes localized within the range 7 au—smaller
than the range in the atomic case: 10 au. The detailed information on the depth and width
of the potential for a specific crystal gives the detailed difference of positron annihilation
lifetimes.

For the 1s orbital of the positron in LiF, the contribution of the crystal effect to the
lifetimes is slightly larger than that of the pair correlation effect, and it is of the same order
in NaF. However, for both LiCl and NaCl, the pair correlation effect becomes larger. These
features reflect that the shape of the crystal potential also influences the correlation effect.
As the Madelung potential becomes shallower and wider, the correlation effect becomes
more enhanced, without changing the shape of the correlation potential.

As the lattice constant becomes larger in alkali fluorides, the lifetime becomes larger
for the ground state of the positron. This is also true for the alkali chlorides, as shown
in table 4. The modified point-ionic calculations show the same order of magnitude of
the positron lifetimes as the experimental data. However, there is still a large discrepancy
between them, which may be attributed to the spread of the positron density due to the
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Figure 4. The effect of the crystal field on bulk states of positron orbitals within the simplified
point-ionic Madelung potential. The crystal potential plays the role of the potential barrier to
the positron being localized at a halide site.

Table 4. Positron annihilation lifetimes (ns) obtained for the ground state of the positron in
alkali halides using the modified point-ionic and the energy band-ionic potentials.

Point ion Band ion

Crystal XO XC EPC XO XC EPC Experimenta

LiF 0.792 0.458 0.326 0.199 0.172 0.135 0.132
NaF 1.211 0.526 0.358 0.344 0.292 0.198 0.193
LiCl 1.464 1.011 0.452 0.585 0.491 0.262 0.236
NaCl 1.499 1.002 0.449 0.873 0.707 0.335 0.313

aBussolatiet al [19].

shallow crystal potential barrier of the positron.

6.2. The energy band-ionic potential model

The crystal potential is constructed by the superposition of individual ions centred at
appropriate sites of the lattice. In the energy band crystal potential, each ionic site was
represented by the full ionic potential on the basis of band information from the LCAO
band-structure calculation [20–22]. The energy bands of alkali halides are either completely
filled, or completely empty, and are separated by a large energy gap (>5 eV). Alkali halides
have the ionic characteristic of the strong localization of the electron density; for example,
the Na+ ions lose their 3s electron, which is transferred to make the Cl− ion, thereby
completing the chlorine 3p shell. The 1s, 2s, and—to a large extent—also 2p levels for
the Na+ ions are so localized at the ion that for the equilibrium interatomic spacing, no
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Figure 5. The model-dependent crystal effect on the bulk states of positron orbitals in the NaF
crystal. The energy band crystal potential provides the potential barrier to the positron, which
can be confined more tightly than in the point-ionic crystal potential case. The higher states of
the positron are unphysical, due to the limitations of the single-site cluster approximation.

overlap arises, and these levels, therefore, remain atomic-like and sharp. On the other hand,
there is sufficient overlap of 3s states of Na+ ions that these build a band of levels, but this
is empty. Because the Cl− ions have large ionic radii, there is a much greater tendency
for their orbitals to be overlapped. Although the more tightly bound electrons remain in
sharp atomic-like states, the 3s and 3p levels of Cl− ions are spread into relatively narrow
bands. In occupied states, there is a quite small Na+–Cl− orbital interaction. This indicates
that bands of 3s and 3p occupied levels are essentially confined wholly to the Cl− ions.
Therefore, the self-consistent density functional calculation includes 18 electrons on the
halide site.

This band information has been included in the positron annihilation calculation by using
the band-ionic crystal potential in the embedded-cluster method. The one-site approximation
of this method facilitates this calculation just as much as it does in the modified point-ionic
potential model. The positron annihilation at the anion centre, with the energy band-ionic
crystal potential, is shown in table 4. On comparison with experimental results, positron
lifetime calculations show a relatively good agreement for the ground state of the positron.
The agreement for the calculated positron lifetimes for alkali fluorides is better than that for
those for alkali chlorides. This may reflect the deeper potential well and the higher potential
barrier of the crystal field to the electron and the positron, respectively, in alkali fluorides.
The large discrepancy in the positron lifetimes for alkali chlorides may be attributed to the
spread positron density—up to the neighbouring alkali ions—due to the shallow potential
barrier of the crystal potential.

The calculations of the positron lifetimes for the ground state of the positron localized
at a halide site were carried out by adding several ingredients. The XO calculations of the
positron annihilation in LiF and NaF crystals using the band-ionic crystal potential predict
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Figure 6. The power-law relation of positron annihilation rates in alkali halides;d (au) is the
nearest-neighbour distance and0 (GHz) is the annihilation rate. The experimental results from
Bussolatiet al [19] are in good agreement. The large discrepancy for LiCl is attributed to the
distortion of the positron state by the neighbouring Li ion.

lifetimes that are shorter than those obtained from EPC calculations using the modified
point-ionic potential. As shown in figure 5, the energy band-ionic crystal potential provides
more localization of the positron density than does the point-ionic crystal potential. The
ground state of the positron is strongly confined, within 5 au, which means that it is close
to the adjacent ions. The higher-order positron states also show a contraction due to the
strong crystal repulsion of the positron barrier. However, the states are unphysical due to
the limitations of the single-site cluster approximation for the halide site. For LiCl and
NaCl crystals, which have larger crystal lattice constants than LiF and NaF crystals, the
details of the crystal effect are less pronounced, and the XO results are comparable with
the EPC results for the modified point-ionic potential.

When the positron correlation potential in the XC calculation is taken into account in
the band model, the results are only slightly changed. The inclusion of the pair correlation
function in the EPC calculation also does not change the positron lifetimes much. These
theoretical results agree with the experimental values well for the fully energy-minimized
basis set. This implies that the strong crystal effect derived from band-structure information
is the main contribution perturbing the electron and positron states. However, the effect of
the positron correlation potential and the pair correlation function are not significant enough
to modify the final states of both of the electrons and the positron, and thus they change
the positron lifetimes only slightly.

The model dependence of the calculation of positron lifetimes is clear. The atomic
calculation values obtained for the positron lifetimes—in the range 0.501–0.581 ns—become
smaller on inclusion of the point-ionic crystal potential: 0.326–0.452 ns. A further reduction
to values in the range 0.135–0.335 ns occurs on introducing the band-ionic crystal potential.
The band potential provides an appropriate model for the 1s bound state of the positron
which is well localized around the anion site. There is an interesting spectral analysis by
Bertolacciniet al [33] of the experimental data for the annihilation rate of the shortest-lived
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positron state. In their view, the crystal volume can be divided into two regions: one
occupied by positive ions and the other occupied by negative ions. The density of negative
ions—whose region can be accessed by the positron—is linearly dependent on the positron
annihilation rate of this 1s state in highly ionic crystals. This analysis consistently agrees
with the one-site approximation.

Furthermore, the positron dissociation into positronium (Ps) is not stable in the ionic
crystals. The positronium formation potential (εPs) is defined as the negative of the maximum
kinetic energy of Ps atoms emitted into vacuum, and the positron affinity is the negative
sum of the internal electron and positron chemical potentials [2, 34]. As a measure of the
Ps dissociation, the Ps formation potential can be written in terms of the positron affinity
(A+) to the crystal:

εPs= −A+ − EPs (50)

where the Ps binding energy in a vacuum isEPs = −6.8 eV. Since the positron affinity
(<−7.0 eV) in the ionic crystal is strong, like in alkali metals [34], the formation potential
becomes positive, which indicates the cause of the instability of the Ps. Although the Ps
formation is strongly influenced by the surface state of the electron density, the strongly
localized state of the electron at the surface of the ionic crystal forms a large penetration
barrier against Ps escape into the vacuum.

Finally, the relationship between positron annihilation rates and crystal properties in
terms of lattice constants can be addressed. As shown in figure 5, the annihilation rates
(THz) for the ground state of the positron in alkali halides can be expressed using the
following power laws:

0theory= 1.306a−2.538
0 (51)

0exp= 1.084a−2.433
0 (52)

wherea0 is the lattice constant. The larger the lattice constant, the less the overlap of the
electron–positron densities, and thus the smaller the annihilation rates, because the positron
may reside in the larger interstitial region and be longer lived.

7. Conclusions

In the pure-crystal system of alkali halides, the crystal potential has been incorporated in
the Madelung ionic potentials in two ways: (1) as a modified point-ionic potential including
information on the ionic radius; and (2) as a full ionic potential derived from electronic
energy band-structure calculations. The density functional calculation has been performed
for the anion centre in the one-site embedded scheme which includes the Hamiltonian for
the infinite lattices and the Gaussian basis set at the centre. The contribution of the crystal
effect competes with the positron correlation effect. The positron lifetimes are found to
be sensitive to the crystal model potential used. The positron forms bound states with
a substantial density in interstitial lattice positions. The positron ground state may be
formed on an electron-rich anion site, and finally annihilate into two photons, in alkali
halides. The results agree relatively well with experimental data, and give a power-law
relationship between the annihilation lifetimes and lattice constants. The large discrepancy
of positron lifetimes for the ground states in LiCl and NaCl crystals may be partially
attributed to the distortion of the positron ground state caused by neighbouring alkali ions.
The higher positron states are unphysical due to the limitations of the single-site cluster
approximation. The inclusion of the positron interaction at alkali sites by implementing the
multi-site embedded-cluster approximation is desirable.
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